[Methodes de Min-max pour hypersurfaces minimales ayant le bord donné]
Dans ce travail nous proposons une théorie « de Min-Max » pour hypersurfaces plongées ayant un bord prescrit. Nous donnons plusieurs applications de cette théorie à l’existence de solutions du problème de Plateau. Des variantes plus simple des nos théoremes sont aussi valides pour les hypersurfaces minimales avec frontière libre.
In this note we propose a min-max theory for embedded hypersurfaces with a fixed boundary and apply it to prove several theorems about the existence of embedded minimal hypersurfaces with a given boundary. A simpler variant of these theorems holds also for the case of the free boundary minimal surfaces.
Révisé le :
Accepté le :
Publié le :
Keywords: Minimal surfaces, Min-Max theory, Plateau problem
Mots-clés : Surfaces minimales, Théorie de Min-Max, problème de Plateau
De Lellis, Camillo 1 ; Ramic, Jusuf 1
@article{AIF_2018__68_5_1909_0, author = {De Lellis, Camillo and Ramic, Jusuf}, title = {Min-max theory for minimal hypersurfaces with boundary}, journal = {Annales de l'Institut Fourier}, pages = {1909--1986}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3200}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3200/} }
TY - JOUR AU - De Lellis, Camillo AU - Ramic, Jusuf TI - Min-max theory for minimal hypersurfaces with boundary JO - Annales de l'Institut Fourier PY - 2018 SP - 1909 EP - 1986 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3200/ DO - 10.5802/aif.3200 LA - en ID - AIF_2018__68_5_1909_0 ER -
%0 Journal Article %A De Lellis, Camillo %A Ramic, Jusuf %T Min-max theory for minimal hypersurfaces with boundary %J Annales de l'Institut Fourier %D 2018 %P 1909-1986 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3200/ %R 10.5802/aif.3200 %G en %F AIF_2018__68_5_1909_0
De Lellis, Camillo; Ramic, Jusuf. Min-max theory for minimal hypersurfaces with boundary. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 1909-1986. doi : 10.5802/aif.3200. https://aif.centre-mersenne.org/articles/10.5802/aif.3200/
[1] Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys., Volume 322 (2013) no. 2, pp. 515-557 | DOI | MR | Zbl
[2] Min-max theory and the energy of links, J. Am. Math. Soc., Volume 29 (2016) no. 2, pp. 561-578 | DOI | MR | Zbl
[3] On the first variation of a varifold: boundary behavior, Ann. Math., Volume 101 (1975), pp. 418-446 | DOI | MR | Zbl
[4] The homotopy groups of the integral cycle groups, Topology, Volume 1 (1962), pp. 257-299 | DOI | MR | Zbl
[5] The theory of varifolds: a variational calculus in the large for the -dimensional area integrand, Mimeographed notes, Princeton University Press, 1965
[6] Dynamical systems with two degrees of freedom., Trans. Am. Math. Soc., Volume 18 (1917), pp. 199-300 | DOI | Zbl
[7] The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) (Surveys in differential geometry), Volume 8, Int. Press, Somerville, MA, 2003, pp. 75-107 | DOI | MR | Zbl
[8] On the classification of Heegaard splittings (2015) (https://arxiv.org/abs/1509.05945)
[9] Genus bounds for minimal surfaces arising from min-max constructions, J. Reine Angew. Math., Volume 644 (2010), pp. 47-99 | DOI | MR | Zbl
[10] The existence of embedded minimal hypersurfaces, J. Differ. Geom., Volume 95 (2013) no. 3, pp. 355-388 http://projecteuclid.org/euclid.jdg/1381931732 | MR | Zbl
[11] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, 1969, xiv+676 pages | MR | Zbl
[12] The almost minimizing property in annuli Master Thesis, Universität Zürich (Switzerland), 2011
[13] Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80, Birkhäuser, 1984, xii+240 pages | DOI | MR | Zbl
[14] Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscr. Math., Volume 58 (1987) no. 3, pp. 295-343 | DOI | MR | Zbl
[15] Regularity results for minimizing currents with a free boundary, J. Reine Angew. Math., Volume 375/376 (1987), pp. 307-325 | DOI | MR | Zbl
[16] Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 13 (1986) no. 1, pp. 129-169 | MR | Zbl
[17] On embedded minimal disks in convex bodies, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 3 (1986) no. 5, pp. 345-390 | MR | Zbl
[18] Curvature estimates for stable free boundary minimal hypersurfaces (2016) (https://arxiv.org/abs/1611.02605)
[19] Morse-Conley theory for minimal surfaces of varying topological type, Invent. Math., Volume 102 (1990) no. 3, pp. 465-499 | DOI | MR | Zbl
[20] Min-max minimal surfaces in 3-manifolds, Massachusetts Institute of Technology (USA) (2014) (Ph. D. Thesis)
[21] A general existence theorem for embedded minimal surfaces with free boundary, Commun. Pure Appl. Math., Volume 68 (2015) no. 2, pp. 286-331 | DOI | MR | Zbl
[22] Min-max theory for free boundary minimal hypersurfaces I - regularity theory (2016) (https://arxiv.org/abs/1611.02612)
[23] Variational problems on closed manifolds, Doklady Akad. Nauk SSSR (N.S.), Volume 81 (1951), pp. 17-18 | MR | Zbl
[24] Min-max theory and the Willmore conjecture, Ann. Math., Volume 179 (2014) no. 2, pp. 683-782 | DOI | MR | Zbl
[25] Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., Volume 4 (2016) no. 4, pp. 463-511 | MR | Zbl
[26] The existence of minimal surfaces of general critical types, Ann. Math., Volume 40 (1939) no. 2, pp. 443-472 | DOI | MR | Zbl
[27] Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical Notes, 27, Princeton University Press; University of Tokyo Press, 1981, iv+330 pages | MR | Zbl
[28] Existence of minimal surfaces of bounded topological type in three-manifolds, Miniconference on geometry and partial differential equations (Canberra, 1985) (Proc. Centre Math. Anal. Austral. Nat. Univ.), Volume 10, Australian National University, 1986, pp. 163-176 | MR | Zbl
[29] Applications of minimax to minimal surfaces and the topology of -manifolds, Miniconference on geometry and partial differential equations, 2 (Canberra, 1986) (Proc. Centre Math. Anal. Austral. Nat. Univ.), Volume 12, Australian National University, 1987, pp. 137-170 | MR | Zbl
[30] Estimates for stable minimal surfaces in three-dimensional manifolds, Seminar on minimal submanifolds (Annals of Mathematics Studies), Volume 103, Princeton University Press, 1983, pp. 111-126 | MR | Zbl
[31] Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 741-797 | DOI | MR | Zbl
[32] Curvature estimates for minimal hypersurfaces, Acta Math., Volume 134 (1975) no. 3-4, pp. 275-288 | DOI | MR | Zbl
[33] The Plateau problem for non-relative minima, Ann. Math., Volume 40 (1939), pp. 834-854 | DOI | MR | Zbl
[34] Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University, 1983, vii+272 pages | MR | Zbl
[35] On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric, University of Melbourne (Australia) (1982) (Ph. D. Thesis)
[36] On a critical point theory for minimal surfaces spanning a wire in , J. Reine Angew. Math., Volume 349 (1984), pp. 1-23 | DOI | MR | Zbl
[37] A Morse theory for annulus-type minimal surfaces, J. Reine Angew. Math., Volume 368 (1986), pp. 1-27 | DOI | MR | Zbl
[38] Plateau’s problem and the calculus of variations, Mathematical Notes, 35, Princeton University Press, 1988, x+148 pages | MR | Zbl
[39] Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve in , Manuscr. Math., Volume 48 (1984) no. 1-3, pp. 139-161 | DOI | MR | Zbl
[40] Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve in . I. , Trans. Am. Math. Soc., Volume 290 (1985) no. 1, pp. 385-413 | DOI | MR | Zbl
[41]
(personal communication)[42] A strong minimax property of nondegenerate minimal submanifolds, J. Reine Angew. Math., Volume 457 (1994), pp. 203-218 | DOI | MR | Zbl
[43] Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., Volume 488 (1997), pp. 1-35 | DOI | MR | Zbl
[44] The maximum principle for minimal varieties of arbitrary codimension, Commun. Anal. Geom., Volume 18 (2010) no. 3, pp. 421-432 | DOI | MR | Zbl
Cité par Sources :